国产成人AV无码一二三区,少女1到100集,国产精品久久久久精品综合紧,巜公妇之诱感肉欲HD在线播放

文章 > Spyder > 怎么使用spyder的帮助

怎么使用spyder的帮助

头像

爱喝马黛茶的安东尼

2020-01-16 14:02:1111017浏览 · 0收藏 · 0评论

在使用Spyder时,有可能要查询某个函数或者某个??榈木咛逵梅?。

1、要查看??榈淖饔盟得?、简介,可以直接在交互区直接输入:

print( ??槊?__doc__)

例如:要查看pandas的介绍

In [1]:print(pd.__doc__)
pandas - a powerful data analysis and manipulation library for Python
=====================================================================
**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.
Main Features
-------------
Here are just a few of the things that pandas does well:
  - Easy handling of missing data in floating point as well as non-floating
    point data
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can  be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets
  - Intuitive merging and joining data sets
  - Flexible reshaping and pivoting of data sets
  - Hierarchical labeling of axes (possible to have multiple labels per tick)
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, moving window linear regressions,
    date shifting and lagging, etc.

2、想知道某个函数的用法可以使用:

help(函数名)

例如:要查询pandas的fillna的使用方法

In [2] :help(x.fillna)
Help on method fillna in module pandas.core.frame:
fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) method of pandas.
core.frame.DataFrame instance
    Fill NA/NaN values using the specified method
    Parameters
    ----------
    value : scalar, dict, Series, or DataFrame
        Value to use to fill holes (e.g. 0), alternately a
        dict/Series/DataFrame of values specifying which value to use for
        each index (for a Series) or column (for a DataFrame). (values not
        in the dict/Series/DataFrame will not be filled). This value cannot
        be a list.
    method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
        Method to use for filling holes in reindexed Series
        pad / ffill: propagate last valid observation forward to next valid
        backfill / bfill: use NEXT valid observation to fill gap
    axis : {0 or 'index', 1 or 'columns'}
    inplace : boolean, default False
        If True, fill in place. Note: this will modify any
        other views on this object, (e.g. a no-copy slice for a column in a
        DataFrame).
    limit : int, default None
        If method is specified, this is the maximum number of consecutive
        NaN values to forward/backward fill. In other words, if there is
        a gap with more than this number of consecutive NaNs, it will only
        be partially filled. If method is not specified, this is the
        maximum number of entries along the entire axis where NaNs will be
        filled. Must be greater than 0 if not None.
    downcast : dict, default is None
        a dict of item->dtype of what to downcast if possible,
        or the string 'infer' which will try to downcast to an appropriate
        equal type (e.g. float64 to int64 if possible)
    See Also
    --------
    reindex, asfreq
    Returns
    -------
    filled : DataFrame

Python学习网,有大量免费的Spyder使用教程,欢迎大家学习!

关注

关注公众号,随时随地在线学习

本教程部分素材来源于网络,版权问题联系站长!

父亲开了两个女儿包演员表| 成人猫咪最新地域网名是什么啥| 朋友的妈妈7中字谜| 夹腿高潮后注意力不集中能恢复吗| 日本暴力强伦轩视频| 兽父1到16集一口气看完 | 《黏糊糊的你》免费观看| 暴躁老阿姨CSGO技能推荐大全| 陌陌影视在线观看高清完整版| 《年轻朋友的妻子3》| 《性爽2》电影| 两个奶头被吃得又翘又肿特别疼 | 《尼姑庵春梦》| 《饥饿妻子》完整版在线观看| 法国《口咬》电影完整版| 《相濡以沫的夜晚》动漫免费全部 | 五姑娘影院在线观看免费版电视剧| 日本大片又大又好看的PPT| 老公把闺蜜干的嗷嗷叫| 男男| 三叶草M码和欧洲码区别| 1-46集电视剧免费观看| 日本真人版免费PPT| 美国巜性来潮喷1| 《老板送醉酒丈夫回家》| 欧美| 日韩成人无码| 理伦片丰满妓女院| 军官(巨肉高H)| 怎么骑桌角到失禁| 5YY3.CNV7Y7.CC| CSGO2开箱网站| 下面的小嘴又饿了| 玛莉娜1984| 《大度》韩版免费| 4488YY无码亚洲人成| 欧洲最强女RAPPER免费| 校花被带到阳台狂C躁在线观看| 黑科网 今日黑科独家爆料| 女性左腿又开腿肚子中间疼视频| 暴躁少女CSGO免费观看